Modeling of Design Structural Loads for a 40-kW Furling Wind Turbine

Craig Hansen and Dean Davis, Windward Engineering

With the support of

Bergey Windpower Company, Inc.

and

The NREL/NWTC

(Major portions presented at ASME Wind Energy Symposium, January, 2000)

Objectives

- Estimate design loads for the prototype of a 40 kW Bergey system
 - Furling model in question
 - Hence the present objective...
- Determine sensitivity of furling behavior to aerodynamic model and turbine geometry

ADAMS Model of a Bergey 40 kW System

Structure

- Flexible blades (60 dof each)
- Thrust offset easily adjusted
- Free-yaw, free-furling (with stops)
- Linear furl damper (single-acting, unfurling motion only)
- Rigid tower
- Rigid drive train with generator torque/speed curve
- Properties do not match <u>current</u> design of Bergey system

• Aerodynamics

- AeroDyn aerodynamics model (version 11.25)
 - Optional use of dynamic stall, dynamic inflow, and UIUC post-stall corrections
- Aerodynamic forces on tail via CL and CD lookup table
 - No adjustment for rotor wake in this version

Rotor Contributions to the Furling Moment

Steady wind (0.2 power law), 90 rpm, -20° yaw error (Dynamic stall, Pitt & Peters dynamic inflow, no post-stall correction)

Sensitivity of Yaw Moment to Aerodynamic Model

- Steady wind (0.2 power law), 90 rpm, no tail force, fixed yaw and zero furl angle
- Normalized by 8 m/s case at zero yaw, with dynamic stall and dynamic inflow
- Color key: Blues ⇒ No dynamic inflow; Golds ⇒ With dynamic inflow; Gray ⇒ No wake. Last two series with zero yaw have zero thrust offset. Dynamic stall and post-stall options also exercised.

Sensitivity of Rotor Thrust to Aerodynamic Model

- Steady wind (0.2 power law), 90 rpm, no tail force, fixed yaw and zero furl angle
- Normalized by 8 m/s case at zero yaw, with dynamic stall and dynamic inflow
- Color key: Blues ⇒ No dynamic inflow; Golds ⇒ With dynamic inflow; Gray ⇒ No wake. Last two series with zero yaw have zero thrust offset. Dynamic stall and post-stall options also exercised

Predicted Furling Behavior

- Effect of doubling the tail area and the thrust offset
- IEC turbulence (2x10 minutes) with free yaw, free-furl, variable speed alternator, dynamic stall, dynamic inflow, and furling damper

Turbulence Affects Mean Behavior

- Predictions in turbulent (IEC) and steady winds, both with 0.2 power law mean shear
- Free yaw, free-furl, variable speed alternator, dynamic stall, dynamic inflow, and single-acting furling damper

Sensitivity to Tail Vane Size and Weight

- Effect of doubling the tail area and reducing the tail mass by one-half
- IEC turbulence (2x10 minutes) with free yaw, free-furl, variable speed alternator, dynamic stall, dynamic inflow, and furling damper

Sensitivity to Airfoil Characteristics

Steady 10 m/s wind (0.2 power law), 90 rpm, fixed yaw and furl, no tail force Dynamic stall, Pitt & Peters dynamic inflow, no post-stall correction

Sensitivity to Forward Offset

- Yesterday we ran simulations using "ramp" winds and three values of forward offset (upwind distance from yaw axis to hub center)
 - *Used 9.4%, 13%, and 16% of rotor diameter*
 - Winds from 10 to 16 m/s in 1 m/s increments
 - 0.1905 m lateral offset and 2° tilt (different from previous work)
- Saw virtually no effect on RPM, power, or loads. See minor effect on furl and yaw angles
- This result is contrary to intuition and Bergey test experience. We need to confirm the result with model checks

Conclusions

- Furling is a result of small differences in large contributors to the net yaw moment
- Furling response is most sensitive to the thrust offset
 - Tail area and mass are less important
 - Airfoil selection and rotor speed can be important
- Dynamic inflow theory has a strong influence on predicted yaw moment when there is a small yaw error
- These factors make furling one of the most difficult situations to model
- These conclusions apply only to the rotor we modeled. The Bergey 40 kW system and other systems may differ markedly

Future Plans

- Model validation using Bergey 40-kW test results
- Model validation using Ames wind-tunnel test results for the UAE rotor (NREL support)
- Model validation using Whisper 900 test results from our Small Turbine Field Verification project (DOE support)

